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Abstract: Desertification is a serious threat to human survival and to ecosystems, especially to inland
desert oases. An assessment of desertification severity is essential to ensure national sustainable
development for agricultural and land expansion processes in this region. In this study, Index
of Land Susceptibility to Wind Erosion (ILSWE) was integrated with a Modified Mediterranean
Desertification and Land Use (MEDALUS) method and factor analysis (FA) to develop a GIS-based
model for mapping desertification severity. The model was then applied to 987.77 km2 in the El-
Farafra Oasis, located in the Western Desert of Egypt, as a case study. Climate and field survey
data together with remote sensing images were used to generate five quality indices (soil, climate,
vegetation, land management and wind erosion). Based on the FA, a weighted value was assigned to
each index. Five thematic layers representing the indices were created within the GIS environment
and overlaid using the weighted sum model. The developed model showed that 59% of the total
area was identified as high-critical and 38% as medium-critical. The results of an environmentally
sensitive area index suggested by the original MEDALUS model indicated similar results: 18.37% of
the total area was classified as high-critical and 78.73% as medium-critical. However, the sensitivity
analysis indicated that weights derived from FA resulted in better performance of the developed
spatial model than that derived from the original MEDALUS method. The proposed model would
be a suitable tool for monitoring vulnerable zones, and could be a starting point for sustainable
agricultural development in inland oases.

Keywords: desertification; wind erosion; El-Farafra Oasis; modeling; GIS; ILSWE; MEDALUS;
factor analysis

1. Introduction

In dryland areas, desert oases play an important role in sustainable development [1,2].
However, they are fragile agrarian areas and are very sensitive to degradation and desertifi-
cation [3]. In these areas, desertification is a dynamic and complex form of land degradation
processes [4]. It poses negative effects on land productivity, and causes serious problems in-
cluding food insecurity, poverty, political instability, and social disintegration [5]. Therefore,
precise assessment of environmentally sensitive areas (ESAs) to desertification is essential
for sustainable development [6].

Evaluating current desertification status requires key parameters and factors, in-
cluding various biophysical and human factors [1]. In this context, the Mediterranean
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Desertification and Land Use (MEDALUS) method developed by Kosmas et al. [7] has been
widely used. This model focused primarily on common degradation processes in the Euro-
pean Mediterranean environment. However, it provided acceptable results for assessing
desertification status in many desert oases in Egypt [8], Morocco [1] and Tunisia [9]. A
science-based estimation of ESAs requires the adoption and analysis of parameters and
factors related directly to the locally dominant degradation-related processes [6,10]. As a re-
sult, under Egyptian local conditions, adjusted MEDALUS models have been implemented
to incorporate new variables as predictors of soil quality such as salinity, organic matter
content [6], calcium carbonate and gypsum content [11]. Furthermore, the vegetation
index has been expressed by the Normalized Differential Vegetation Index (NDVI) [11,12].
However, land susceptibility to degradation in the inland western oasis is closely related to
wind erosion [13]. According to the Egyptian National Action Program to Combat Deserti-
fication [14], wind erosion hazards in the western desert oases varies between moderate
and severe with an average soil loss rate varying from 4.5 to 66.9 Mg ha−1 year−1. Thus,
quantitative assessment of soil loss due to wind action is crucial when appraising desertifi-
cation in these areas. The index of land susceptibility to wind erosion (ILSWE) proposed
by Borrelli et al. [15] is a well-established model for measuring wind erosion. The model
depends on a combination of climatic erosivity, soil erodibility, soil crust factor, vegetation
cover, and surface roughness derived from comprehensive measurements of climate data,
field observations, and laboratory analysis. Although ILSWE was primarily developed
under European conditions, Fenta et al. [16] proved its applicability under African con-
ditions. Therefore, integration of ILSWE and the original MEDLAUS indices in a spatial
model would be useful for better evaluation of desertification hazards. Real estimation of
current desertification status requires the integration of a given set of parameters and their
relative importance or weights [17,18]. A statistical-based approach such as factor analysis
(FA) provides an effective and objective methodology to develop dynamic weights for a
set of multiple parameters [19,20]. This technique provides dynamic weights and permits
modifying weight values based on spatial and temporal changes [21,22]. The FA has been
used increasingly in land resource assessments [18,23,24]; however, little attention has been
paid to using this technique in analyzing desertification sensitivity.

This work therefore aimed to (i) incorporate soil loss calculated by the ILSWE with
the original four quality indices that were adjusted by the MEDALUS methodology, (ii)
integrate FA in establishing weights for the five indices, and (iii) develop a GIS-based
model using the weighted indices. The model was then applied in the El-Farafra Oasis, in
the western desert of Egypt, as a case study to evaluate the current status of desertification
sensitivity.

2. Materials and Methods
2.1. The Study Area

El-Farafra is one of the inland oases in the Egyptian western desert, approximately mid-
way between the Dakhla and Bahariya oases. The study area was conducted in 987.77 km2

(Figure 1). The geographic location is in the UTM zone 35 between longitudes 27◦39′41′′ to
28◦00′17′′ E and latitudes 26◦43′07′′ to 27◦14′45′′ N. The climate in the investigated area is
ordered as hot desert, the minimum temperate is 6 ◦C and occurs during January, while the
highest is 39 ◦C and occurs during August. The mean annual temperature is 22.92 ◦C and
the total annual rainfall is 0.25 mm. The mean annual potential evapotranspiration (PET)
is 6.14 mm day−1. The mean annual relative humidity averages 36.33%, while the mean
annual wind speed is 8.18 km h−1 [25]. The area is covered by sedimentary sequences of
Upper Cretaceous to Quaternary eras. In the western parts, chalky limestone of Tarawan
Formation (Paleocene), Farafra limestone (Eocene) and Esna shale Formations (Miocene)
are predominant. The remaining parts are covered with chalk of Upper Cretaceous (Dakhla
and Khoman) and Quaternary Formations (Sabkha). The elevation height ranges from 42
to 342 m above sea level.
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Figure 1. Location maps of the studied area (Sentinel-2A and landsat-8 mosaic images).

2.2. Remote Sensing and GIS Work

Two scenes (T35RNL and T35RNK) from the Sentinel-2A Multispectral Instrument
(MSI) sensor satellite with a 10 m spatial resolution were acquired from the Copernicus
Data Hub gateway (https://scihub.copernicus.eu/, accessed on 23 December 2019). A
digital elevation model (DEM) with 12.5 m pixel size of Advanced Land Observing Satel-
lite (ALOS) Phased Array type L-band SAR (PALSAR) was also downloaded from the
Alaska Satellite Facility (ASF) (https://www.asf.alaska.edu/sar-data/palsar/, accessed on
26 February 2021). The digital processing of satellite images was performed using ENVI 5.1
software, including atmospheric correction (FLASH module), stretching, band-stacking,
mosaicking and spatial-spectral subsets. Thereafter, an unsupervised classification (ISO
DATA classifier) followed by a supervised classification (maximum likelihood) was exe-
cuted. Within ArcGIS 10.8 (ESRI Co, Redlands, CA, USA), slope classes and aspect were
extracted from the DEM. In the light of the processed image, geological map and DEM, the
different landforms were delineated [25], and the mapping units were described [26].

2.3. Field Work and Laboratory Analyses

Twenty-eight geo-referenced soil profiles (Figure 2) were dug to a 150 cm depth or to
lithic contact. General features of each profile were recorded according to the Food and
Agriculture Organization of the United Nations (FAO [27]. Ninety-three soil samples were
collected from the subsequent horizons. Thereafter, samples were air-dried, ground, and
sieved through a 2-mm mesh. Soil analyses were carried out according to the Soil Survey
Staff [28]. The particle size distribution was performed using the standard pipette method.
pH and electrical conductivity (EC) were measured in the 1:2.5 soil-water suspensions
and in the soil paste extract, respectively. The soil organic matter (OM) was determined
using the standard Walkley–Black procedure. The cation exchange capacity (CEC) and
exchangeable sodium were determined using the ammonium acetate pH 7.0 method. Cal-
cium carbonate was determined using the calcimeter. The gypsum content was determined

https://scihub.copernicus.eu/
https://www.asf.alaska.edu/sar-data/palsar/
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using the acetone precipitation method. The studied area was classified into four main
landscapes (physiographic units) i.e., Plateau (Pt) that divided to Summit (Pt 111) and
Escarpment (Pt 211); Piedmont “Slopping area” (Pd 111); Plain (Pl) that divided to High
terraces (Pl 111), Low terraces (Pl 112), Basin (Pl 113) and Salt marshes (Pl 121) and Water
bodies (Wb).

Figure 2. Physiographic units and locations of soil profiles in the studied area.

2.4. Modeling Desertification in the Studied Area

This procedure involved five steps as follows: (1) quantifying the original qual-
ity indices of the MEDALUS method; (2) developing a wind erosion protection index;
(3) establishing a weight for each index, (4) generating a GIS-based model and (5) model
validation, (Figure 3).
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Figure 3. Methodology flowchart in the current work.

2.4.1. Quantifying the Original MEDALUS Indices

Parameters used for defining the four standard indices of the MEDLUS method are
shown in Table 1. The indices involve the soil quality index (SQI), climate quality index
(CQI), vegetation quality index (VQI) and land management quality index (MQI). Each
index was calculated using the geometric mean algorithm of number (n) of scores (S)
as follows:

Indexx = [S1 ∗ S2 ∗ S3 ∗ Sn]
1/n
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Table 1. Dataset included in the modified MEDALUS methodology.

Index Parameter Class Description Score

Soil quality
index (SQI)

Texture a

1 L, SCL, SL, LS, CL 1.0
2 SC, SiL SiCL 1.2
3 Si, C, SiC 1.6
4 S 2.0

Slope a

1 Very gentle to flat: <6% 1.0
2 Gentle: 1–18% 1.2
3 Steep: 18–35% 1.5
4 Very steep: >35% 2.0

Parent material a

1 Shale, Schist, Basic, ultra Basic, Conglomerates, unconsolidated 1.0

2 Limestone, Marble, Granite, Rhyolite, Ignibrite, Gneiss, Siltstone,
Sandstone 1.7

3 Marl, Pyroclastics 2.0

Depth a

1 Deep: >75 cm 1.0
2 Moderate: 75–30 cm 2.0
3 Shallow: 30–15 cm 3.0
4 Very shallow: <15 cm 4.0

Drainage a
1 Well drained 1.0
2 Imperfectly drained 1.2
3 Poorly drained 2.0

Rock fragment a
1 Very stony: >60% 1.0
2 Stony: 60–20% 1.3
3 Bare to slightly stony: <20% 2.0

Electrical
conductivity

(EC) b

1 None: EC < 4 dS m−1 1.0
2 Slight: EC 4–8 dS m−1 1.2
3 Moderate: EC 8–16 dS m−1 1.5
4 Strong: EC 16–32 dS m−1 1.7
5 Extreme: EC > 32 dS m−1 2.0

Exchangeable sodium
percentage

(ESP) c

1 None: ESP < 10 1.0
2 Slight: ESP 10–15 1.2
3 Moderate: ESP 15–30 1.5
4 Strong: ESP 30–50 1.7
5 Extreme: ESP > 50 2.0

Calcium carbonate
(CaCO3) d

1 Non-calcareous: 0 g kg−1 1.0
2 Slightly calcareous: 0–20 g kg−1 1.2
3 Moderately calcareous: 20–100 g kg−1 1.5
4 Strongly calcareous: 100–250 g kg−1 1.7
5 Extremely calcareous: >250 g kg−1 2.0

Gypsum d

1 Non-gepsiric: 0 g kg−1 1.0
2 Slightly gypsiric: 0–50 g kg−1 1.2
3 Moderately gypsiric: 50–150 g kg−1 1.5
4 Strongly gypsiric: 150–600 g kg−1 1.7
5 Extremely gypsiric: >600 g kg−1 2.0

Climate quality
index
(CQI)

Rainfall a
1 High: >650 mm 1.0
2 Moderate: 650–280 mm 2.0
3 Low: <280 mm 4.0

Aridity index
(P/PET) e

1 Humid: >65 1.0
2 Dry sub-humid: 0.50–0.65 1.2
3 Semi-arid: 0.20–0.50 1.5
4 Arid: 0.05–2.0 1.7
5 Hyper-arid < 0.05 2.0

Aspect a 1 NE and NW 1.0
2 SE and SW 2.0
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Table 1. Cont.

Index Parameter Class Description Score

Vegetation
quality index

(VQI)

Fire risk a

1 Low: Bare land, perennial crops, annual crops 1.0

2 Moderate: Annual crops, deciduous oak, mixed Mediterranean,
macchia/evergreen forests 1.3

3 High: Mediterranean macchia 1.6
4 Very high: Pine forests 2.0

Erosion protection a

1 Very high: Mixed mediterranean macchia/evergreen forests 1.0

2 High: Mediterranean macchia, pine forests, Permanent grasslands,
evergreen perennial crops 1.3

3 Moderate: Deciduous forests 1.6
4 Low: Deciduous perennial agricultural crops (almonds, orchards) 1.8

5 Very low: Annual agricultural crops (cereals),
annual grasslands, vines 2.0

Drought resistance a

1 Very high: Mixed Mediterranean macchia/evergreen forests,
Mediterranean macchia 1.0

2 High: Conifers, deciduous, olives 1.2
3 Moderate: Perennial agricultural trees (vines, almonds, ochrand) 1.4
4 Low: Perennial grasslands 1.7
5 Very low: Annual agricultural crops, annual grasslands 2.0

Plant cover f

1 High: NDVI > 0.95 1.0
2 Moderate: NDVI 95–65 1.2
3 Low: NDVI 65–0.35 1.5
4 Very low: NDVI < 0.35 2.0

Land
manage-ment
quality index

(MQI)

Cropland a
1 Low: Land use intensity (LLUI) 1.0
2 Medium: Land use intensity (MLUI) 1.5
3 High: Land use intensity (HLUI) 2.0

Pasture a
1 Low: ASR< SSR 1.0
2 Moderate: ASR = SSR to 1.5×SSR 1.5
3 High: ASR > 1.5×SSR 2.0

Natural areas a
1 Low: A/S = 0 1.0
2 Moderate: A/S < 1 1.2
3 High: A/S = 1 or greater 2.0

Mining areas a
1 Low: Adequate erosion control measurements 1.0
2 Moderate: Moderate erosion control measurements 1.5
3 High: Low erosion control measurements 2.0

Recreations areas a
1 Low: A/P > 1 1.0
2 Moderate: A/P = 1 to 2.5 1.5
3 High: A/P > 2.5 2.0

Policy a
1 High: Complete, >75% of the area under protection 1.0
2 Moderate: Partial, 25–75% of the area under protection 1.5
3 Low: Incomplete: <25% of the area under protection 2.0

a Kosmas et al. [7], b Soil Science Division Staff [29], c FAO [30], d FAO [27], e Michael et al. [31], f Mohamed [11]
and Saleh et al. [12].

For the SQI, the weighted mean values for texture, EC, ESP, CaCO3, and gypsum were
calculated by multiplying the value of the property by the thickness of the soil horizon and
divided by the depth of soil profile.

2.4.2. Wind Erosion Protection Index (WEPI), Index of Land Susceptibility to Wind
Erosion (ILSWE)

The index of land susceptibility to wind erosion protection [15,16] was computed to
estimate the potential annual soil loss (t ha−1 year−1) as follows:

ILSWE = CQF ∗WEF ∗ SCF ∗VCF ∗ SRF
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where CQF is the climatic quality factor; WEF is the wind-erodible fraction factor; SCF is the
soil crust facto; VCF is the vegetation cover factor and SRF is the surface roughness factor.

1. Climate quality factor (CQF)
This factor was calculated as follows:

CQF =
1

100

i=12

∑
i=1
∗Wi3 [(PETi− Pi)/PETi ] ∗ di

where: Wi is the mean monthly wind speed (m s−1) at 2 m height in month i, PETi is the
potential evapotranspiration (mm) in month i, Pi is the precipitation (mm) in month i, and
di is the total number of days in month i.

2. Wind-erodible factor (WEF)
The WEF (t ha−1 year−1) was calculated based on the soil contents of sand (SA),

silt (SI), clay (CL), and organic matter (OM) as follows:

WEF = (29.09 + 0.31SA + 0.17SI + 0.33 SA/SL− 2.59SOM−0.95CaCO3)/100

3. Soil crust factor (SCF)
The SCF factor was computed as follows:

SCF = 1/(1 + 0.0066(Clay)2 + 0.21(Organic Matter)2)

4. Vegetation cover factor (VCF)
The VCF was expressed by the fractional vegetation cover (FVC) derived from the

Sentinel 2-A satellite image. The VCF was computed based on values of the NDVI of highly
dense vegetation (NDVIv) and bare soil (NDVIs) as follows:

VCF = (NDVI−NDVIs)/(NDVIv−NDVIs)

5. Surface roughness factor (SRF)
The SRF represents the ratio of ridge height to ridge spacing and is expressed as an

index with a range of 0 (high ridges and furrows) to 1 (flat, bare, and smooth field) [32]. The
focal statics within the ArcGIS 10.x tools was used to calculate SRF from DEM, as follows:

SRF =
DEMMean −DEMMin

DEMMax −DEMmin

6. Wind erosion severity classes
The ILSWE are normally arranged in five erosion severity classes, including very

slight (<2), slight (2–5), moderate (5–10), high (10–50), and very high (>50). Each one
was assigned a score value ranging from 1 (very slight) to 2 (very high) and these scores
represented the WEPI.

2.4.3. Establishing a Weight Value for Each Index

Based on the communality extracted from FA, each of the five quality indices was
assigned a weight value. Communality indicates the portion of the variance explained
by each index, considering the factor model estimated. High value denotes the high
contribution of this factor to explain the phenomenon examined [20].

2.4.4. Generating a GIS-Based Model

Five thematic layers representing SQI, CQI, VQI, MQI and WEPI were generated using
the inverse distance weighted (IDW) interpolation technique. The IDW has been known
as a powerful technique used for mapping soil and other environmental attributes [33,34].
Thereafter, they were overlain in a single map representing ESAs to desertification using
the weighted sum algorithm.
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2.4.5. Model Performance

Validation was performed by comparing results of the developed model against those
obtained by the environmentally sensitive area index (ESAI) provided in the original
MEDALUS model. The geometric mean algorithm of the five quality indices were used for
calculating the ESAI as follows:

ESAI = [SQI ∗CQI ∗VQI ∗MQI ∗WEPI]1/5

The average linear sensitivity (ALS) method [35,36] was used for calibration of the
results. The ALS denotes a relative normalized change in output in relation to a normalized
change in input as follows:

ALS =

[
Ox−On

Om

]
[

Ix−In
Im

]
where: In and Ix represent the minimum and maximum values of the considered input
parameter and On and Ox are the values of the model output for the corresponding input
values; Im is the mean value of In and Ix and Om is the mean value of On and Ox. The ALS
values express the correlation between the model output and the individual parameter.

3. Results
3.1. Land Use/Land Cover

According to three classification methods i.e., Parallelepiped, Mahalanobis Distance
and Maximum Likelihood with overall accuracy of 96.15%, 91.31% and 97.59%, respectively,
and Kappa coefficient of 0.95, 0.88 and 0.97, respectively, the best classification method is
Maximum Likelihood, and according to these results, the investigated area was dominated
by five land cover classes: rocky areas, bare land, vegetation, sabkha and water bodies
(Figure 4). They occupied 27.15, 823.53, 134.98, 1.78 and 0.33 km2, representing 2.75, 83.37,
13.67, 0.18 and 0.03% of the total area, respectively. The natural vegetation occurred in
small scattered areas covered with perennial grasses (Arundinoideae) around the lakes
and halophytic species (Chenopodiaceae) of the sabkha. According to the official statistics,
field crops dominated 69% of the total cultivated area of which a perennial crop (alfalfa)
covers 15%, while annual crops (wheat, barely clover, broad bean, maize, sorghum, and
groundnuts) cover 54%. The remaining area was occupied by orchards (19%); mango, date
palm, guava and timer tress, and vegetable crops (13%); potato, tomato, onion, and arugula.

3.2. Geomorphology and Soils

Results in Table 2 and Figure 2 show that the studied area includes four main land-
scapes; plateau (Pt), piedmont (Pd), plain (Pl) and water bodies (Wb). The Pt covers an
area of 27.15 km2 (2.75%) in the western part. The Pd covers an area of 20.55 km2 (2.08%)
at the base of the Pt. Soils of Pd are classified as Typic Torriorthents. The Pl covers the
bottom of the area and occupies the majority of the total coverage (95.14%). It includes
four units; high terraces (Pl 111), low terraces (Pl 112), basin (Pl 113), and salt marshes
(Pl 121), repressing 16.00, 42.65, 36.46 and 0.12% of the total area, respectively. Soils of
the Pl 111 unit are classified as Entisols, including sub-great groups, Typic Torripsaments.
Soils of the Pl 112 unit are classified as Entisols (77%) and Aridisols (23%). The Entisols
include sub-great groups, Typic Torripsaments, while the Aridisols include two sub-great
groups, i.e., Sodic Haplocalcids (15%) and Typic Haplocalcids (8%). Soils of the Pl 113 unit are
classified as Entisols (80%) and Aridisols (20%). The Entisols include one sub-great group
(Typic Torripsaments), while the Aridisols include two sub-great groups (Sodic Haplocalcids
and Typic Haplocalcids).
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Figure 4. Land cover map of the studied area.

Table 2. Physiographic map legend and soil taxonomy of the studied area.

Landscape Relief Lithology Landform Unit Area,
km2

Area,
% Profile Soil Taxonomy

Plateau (Pt)
Almost flat (1) Farafra chalk

formation (1) Summit (1) Pt 111 14.87 1.51 ---
---

Steep back
slope (2)

Esna shale
formation (1) Escarpment (2) Pt 211 12.27 1.24 ---

Piedmont
(Pd)

Gently
undulating (1)

Quaternary
sand deposits

mixed with
alluvial-
colluvial

deposits and
Tarawan chalk
formation (1)

Slopping
area (1) Pd 111 20.52 2.08 21 Typic Torriorthents

Plain (Pl) Flat to almost
flat (1)

High terraces (1) Pl 111 158.05 16.00 14 Typic Torriorthents 25%
17, 19, 24 Typic Torripsaments 75%

Low terraces (2) Pl 112 420.41 42.56

2, 6, 12, 16,
18, 23, 25,

26, 27
Typic Torripsaments 69%

11 Typic Torriorthents 8%
13 Typic Haplocalcids 8%

15, 20 Sodic Haplocalcids 15%

Basin (3) Pl 113 360.13 36.46

1, 3, 4, 7, 8,
9, 22, 28 Typic Torripsaments 80%

5 Typic Haplocalcids 10%
10 Sodic Haplocalcids 10%

Sabkha
formation (2) Salt marshes (1) Pl 121 1.18 0.12 --- ---

Water
bodies (Wb) 0.33 0.03 --- ---
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3.3. Soil Properties

Descriptive statics of soil properties (Table 3) show that the soil depth ranged from
105 to 150 cm, slope range of 0.01 to 3.44. The soils had little to large gravel content with a
range of 2.89 to 29.07%. The soil pH ranged from 7.49 to 8.95, while the EC varied from 2.67
to 42.61 dS m−1. Calcium carbonate and gypsum content varied from 22.76 to 321.97 g kg−1

for the former and from 1.21 to 31.21 g kg−1 for the latter. The OM content varied from 1.24
to 7.82 g kg−1. The CEC ranged between 8.61 to 19.90 cmolc kg−1. The ESP varied from
7.92 to 26.83. The sand dominated the soil particle size distribution averaging about 79% of
the fine earth followed by silt (12%) and clay (9%).

Table 3. Descriptive statistics of soil properties of the studied area.

Parameter Unit Min Max Mean SD CV, %

Depth cm 105.00 150.00 130.77 11.66 8.92
Slope % 0.01 3.44 0.49 0.70 144.13

Gravel % 2.89 29.07 14.66 5.90 40.26
pH — 7.49 8.95 8.05 0.29 3.66
EC dS m−1 2.67 42.61 9.31 10.79 115.90

CaCO3 g kg−1 22.76 321.97 109.85 67.92 61.83
Gypsum g kg−1 1.21 31.21 9.65 8.51 88.15

OM g kg−1 1.24 7.82 3.78 1.77 46.79
CEC cmolc kg−1 8.61 19.90 12.29 2.94 23.96
ESP — 7.92 26.83 18.13 5.02 27.67
Sand % 58.40 91.10 79.05 10.37 13.11
Silt % 4.95 27.72 11.58 6.70 57.90

Clay % 3.95 28.72 9.38 5.33 56.89
SD, standard deviation; CV, coefficient of variation; EC, electrical conductivity; OM, organic matter; CEC, cation
exchange capacity; ESP, exchangeable sodium percentage.

3.4. Quantifying the Original Indices

Results in Figure 5 indicate that the SQI ranged from 1.20 to 1.48, indicating moderate
to low soil quality class. The moderate quality soils occupied 96.38% of the total area,
while the low quality soils covered only 0.72% (Table 4). The CQI ranged from 2.00 to 2.52,
indicating low climate quality due to low rainfall and high evaporation rates (Figure 5). Of
the 26bstudied soil sampling sites, 18 sites occurred in the north- and east-facing slopes,
while the remaining sites were on the south- and west-facing slopes.

Table 4. Classes and areas of quality indices of the modified MEDLAUS methodology.

Soil quality index

Class Quality Range Area, km2 Area, %

1 High <1.13 0.00 0.00
2 Moderate 1.13–1.45 951.97 96.38
3 Low >1.45 7.14 0.72

Vegetation quality
index

1 High <1.2 0.00 0.00
2 Moderate 1.2–1.4 0.00 0.00
3 Low 1.4–1.6 10.29 1.04
4 Very low >1.6 949.82 96.06

Land management
quality index

1 High <1.25 766.73 77.62
2 Moderate 1.25–1.5 192.38 19.48
3 Low >1.5 0.00 0.00

Reference terms (Rocky areas, Salt marshes and Water bodies) 28.66 2.90
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Figure 5. The four original quality indices used in the MEDALUS methodology.

The VQI varied from 1.20 to 2.00 (Figure 5), indicating moderate to very low vegetation
quality. Areas of very low vegetation quality covered nearly 96% of the total area, while
low quality areas covered about 1% of the total area (Table 4).

The land management quality varied from high to moderate, since the MQI ranged
from 1.00 to 1.50 (Figure 5). Areas of high land management quality covered 77.62% of the
total area, while those of moderate quality occupied 19.48% (Table 4).

3.5. Assessment of Wind Erosion Protection Index (WEPI), Index of Land Susceptibility to Wind
Erosion (ILSWE)

Results in Figure 6 show values of the five parameters used for calculating the ILSWE;
CQF, WEF, SCF, VCF, and SRF. Combining the five factors, the ILSWE ranged from 0.05 to
15.81 Mg ha−1 year−1, which demonstrated very slight to moderate wind erosion severity.
These values were transformed to the corresponding WEPI (Table 5) with a range of 1.00
to 1.50, indicating very high to moderate quality. According to the WEPI, 90.90% of the
total area was classified as high (areas with slight erosion severity), 1.07% as very high
(areas with very slight erosion severity), and 5.13% as moderate (areas with moderate
erosion severity).
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Figure 6. Index of land susceptibility to wind erosion and corresponding erosion protection index.

Table 5. Classes and areas of the index of land susceptibility to wind erosion (ILSWE) and corre-
sponding wind erosion quality index (WEPI).

Class
ILSWE WEPI

Area, km2 Area, %
Range Severity Score Quality

1 <2 Very slight 1.0 Very high 10.52 1.07
2 2–10 Slight 1.2 High 897.87 90.90
3 10–20 Moderate 1.5 Moderate 50.72 5.13
4 20–50 High 1.7 Low 0.00 0.00
5 >50 Very high 2.0 Very low 0.00 0.00

Reference terms (Rocky areas, Salt marshes and Water bodies) 28.66 2.90

3.6. Multivariate Analysis

Pearson’s correlation matrix (Table 6) shows that the CQI had a significant negative
correlation (p < 0.05) with the WEPI. The VQI indicated highly significant negative correla-
tions (p < 0.01) with MQI and WEPI, while the MQI showed a highly significant positive
correlation with the WEPI.

Table 6. Correlation matrix among the five quality indices.

Soil Climate Vegetation Land
Management

Wind
Erosion

Soil 1.000
Climate −0.309 1.000

Vegetation 0.013 0.263 1.000
Land management −0.265 −0.077 −0.595 ** 1.000

Wind erosion 0.003 −0.400 * −0.666 ** 0.577 ** 1.000
* Correlation is significant at the 0.05 level, ** Correlation is significant at the 0.01 level.

Results in Table 7 indicate that the two components with eigenvalues > 1.0 explained
74.76% of the total variance. The first component was responsible for 46.79% of the total
variance and included WEPI with high positive loadings and VQI with high negative
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loading. The second component accounted for 27.98% of the total variance and was domi-
nated by CQI with high positive loading and SQI with high negative loading. According to
weight values derived from the FA, the five indices could be arranged based on their relative
importance as follows: MQI (0.21) = WEPI (0.21) > SQI (0.20) = VQI (0.20) > CQI (0.18).

Table 7. Varimax rotated component matrix of the five quality parameters.

Parameter PC1 PC2

Communality Weight
Eigenvalue 2.34 1.40
Variance, % 46.79 27.98

Cumulative, % 46.79 74.76

Indicator Eigenvectors

Soil index −0.20 −0.83 0.74 0.20
Climate index −0.34 0.76 0.69 0.18

Vegetation index −0.86 0.11 0.75 0.20
Land management index 0.84 0.26 0.78 0.21

Wind erosion index 0.86 −0.22 0.79 0.21
Bold-face numbers indicates highly-loaded variables (>0.6).

3.7. Environmentally Sensitivite Areas to Desertification

Results of the proposed model (Figure 7 and Table 8) showed that the studied area
was classified as critical-sensitive to desertification. The high-critical ESAs (C3) occupied
59.25% of the total area, while the medium-critical ESAs (C2) occupied 37.85% of the total
coverage. However, the spatial distribution of ESAs under this model indicated that 18.37%
of the total area was classified as high-critical (C3) and 78.73% as medium-critical.

Figure 7. Maps of sensitive areas to desertification in the studied area.
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Table 8. Classes and areas of sensitive areas to desertification in the studied area.

Sensitivity
Degree Type Subtype Index Model Area, km2 Area, %

High Critical
C3 >1.53

Weighted sum 585.87 59.25
ESAI 181.62 18.37

C2 1.53–142
Weighted sum 374.24 37.85

ESAI 778.49 78.73
Reference terms (plateau, sabkha and water bodies) 28.66 2.90

3.8. Validation

The statistical analysis indicated no significant differences (p < 0.01) between the
proposed model and the ESAI. Furthermore, values of R2 and RMSE (Figure 8) were 0.89
and 0.04, respectively, which demonstrates a high correlation between the estimated values
from both models. However, the sensitivity analysis (Figure 9) revealed that the outputs
of the proposed model showed higher values of ALS to the five indices rather than those
obtained by the ESAI.

Figure 8. Relationship between the proposed model and ESAI used in MEDALUS methodology.

Figure 9. Average linear sensitivity of the input parameters for the proposed model and ESAI.
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4. Discussion
4.1. Geomorphology and Soils

Analysis of the main scene extracted from the satellite images through DEM and field
observations enabled the geomorphological unit’s identification in the investigated area.
Soils and sediments affect current operations, and to maintain evidence of past operations,
one must refer to the evolutionary stages in the landscape and provide a basis for the
relative sequence and absolute time.

Results in Table 2, show four main landscapes; plateaus, piedmonts, plains and water
bodies in the investigated area. Plateau represented 2.75% of the study area. Piedmont
covers an area of 2.08% and soils of piedmont are classified as Typic Torriorthents. The plain
occupies the majority of the study area with a total coverage of 95.14%, and includes four
geomorphic units: high terraces, low terraces, basins, and salt marshes. Soils of the high
terraces are classified as Entisols, (Typic Torripsaments). Soils of the low terraces are classified
as Entisols and Aridisols. The Entisols include sub-great groups (Typic Torripsaments), while
the Aridisols include two sub-great groups, i.e., Sodic Haplocalcids and Typic Haplocalcids.
Soils of the basin unit are classified as Entisols and Aridisols. The Entisols include sub-
great groups (Typic Torripsaments), while the Aridisols include two sub-great groups (Sodic
Haplocalcids and Typic Haplocalcids). The water bodies representing 0.03% of the total area.
Some of these water bodies are natural lakes of brackish or saline water that were formed
as a result of the uncontrolled spilling of water and flooding of the plains or due to the
shallow groundwater table [37]. Other man-made lakes were developed in order to collect
water drained from irrigated lands.

4.2. Land Use/Land Cover

Land cover data indicates how much of the study area is covered by land uses i.e.,
water bodies, agriculture, urban and other land and water types and can be determined
by analyzing satellite imagery. Therefore land cover maps provide information to help
decision makers best understand the best use of the land. Land use maps help managers
use the landscape for agriculture expansion, soil conservation, or a combination of uses.

The study area was dominated by five land cover classes: rocky areas, bare land,
vegetation, sabkha and water bodies, representing 2.75, 83.37, 13.67, 0.18 and 0.03%
of the total area, respectively. Field investigations indicated two types of vegetation,
i.e., natural vegetation and cropland. The current land cover status accelerates desertifi-
cation risks due to low vegetation cover (40–10%) and the predominance of annual crops,
providing low protection against wind erosion and drought resistance [7]. According to
AbdelRahman et.al., [38] Siwa Oasis in Egypt experiences several problems that affect its
development: the deterioration of cultivated lands as well as changes in land use and land
cover are the main problems in the oasis. Improper land management is the main cause
of soil salinization and water logging degradation processes in the area. The study also
determined a rapid increase in salt marshes and saline lakes. This highlights the risks
that could affect agricultural land in the oasis. To conserve the oasis requires immediate
measures to confront the worsening deterioration problems in the oasis, such as salinization,
water logging and encroachment of sand dunes [38].

4.3. Soil Properties

All soils contain mineral particles, organic matter, water and air; the combinations
of these determine the soil’s properties such as texture, structure, porosity, chemistry and
color. Soil properties such as alkalinity and salinity limit soil fertility, and soil type plays
an important role in agricultural sustainability, essential to improve land production and
conservation of natural resources to prevent further land desertification [39–43]. Table 3
represents soil depth and refers to deep to very deep soils and soils which were flat to
gently sloping. The soils had little large gravel content. The soils were slightly to strongly
alkaline, non-saline to strongly saline [29], moderately to extremely calcareous and slightly
gypsiric [27]. According to Hazelton and Murphy [39], the soil had extremely low to very
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low organic matter, but low to moderate cation exchange capacity. The ESP indicated none
to moderate sodicity (alkalinity) hazards [30].

4.4. Quantifying the Original Indices

Results in (Table 4) indicate that the SQI was classified into a moderate to low soil
quality class representing 96.38% and 0.72% of the total area, respectively. Little variations
in soil quality could be attributed mainly to similar parent materials that govern nearly all
of the other soil attributes: salinity, alkalinity, calcium carbonate and gypsum content. The
soils did not show limitations related to slope, depth, and drainage, while other factors
(texture, parent materials, rock fragments, salinity, alkalinity, SOM, CaCO3, and gypsum)
showed different degrees of limitation [44–47].

The CQI indicated low climate quality due to low rainfall and high evaporation rates;
since the annual precipitation and aridity index are constant across the area, the slight
variation in the CQI value was due to the slope aspect. The high values of CQI occurred
within the southern and western aspects, which are warmer and have higher evaporation
rates and lower water storage capacity than the northern and eastern aspects [7]. For VQI
indicating moderate to very low vegetation quality, areas of very low vegetation quality
covered nearly 96% of the total area, while low quality areas covered about 1% of the
total area. Spatial variations in VQI related mainly to the NDVI since other factors (fire
risk, erosion protection, and drought resistance) were similar due to a similar crop pattern.
The NVDI derived from remotely sensed images has been used as a good indicator for
monitoring and forecasting vegetation patterns in regions at risk of desertification [11,12].
This can reflect the spatial distribution density of surface vegetation and provide the growth
status and coverage information for the plants being grown [45,46]. Areas of high land
management quality (MQI) covered 77.62% of the total area, while those of moderate qual-
ity occupied 19.48%; this spatial variation related mainly to the land use intensity rather
than the protection policies. Two types of land use intensity were identified in the area
depending on the frequency of irrigation, degree of mechanization, use of pesticides and
fertilizers, crop varieties, etc. [7]. They included low land use intensity on the small farms
managed by local farmers and medium land use intensity on the large-scale farms owned
by investors. However, there was incomplete enforcement of the policies on environmental
protection across the area. The major factor of land degradation in Kafr El-Sheikh Gov-
ernorate, North Nile Delta, Egypt was soil sealing; therefore, a Fuzzy model was used
to assess quantitative land degradation caused by soil sealing. Land degradation caused
inappropriate agricultural practices mainly associated with conservation measurements as
well as improper time use of heavy machinery, over irrigation, and human interventions in
natural drainage [47–49].

4.5. Assessment of Wind Erosion Protection Index (WEPI), Index of Land Susceptibility to Wind
Erosion (ILSWE)

Results in (Table 5) show values of the five parameters used for calculating the ILSWE;
CQF, WEF, SCF, VCF, and SRF. The climatic factors (rainfall, PET, and wind speed) involved
in calculating the CE factor were constant across the studied area, and thus. compared
with WEF and SCF, VCF and SRF seem to be more effective drivers for wind erosion
hazards. This is because soil texture and chemical properties (OM and CaCO3) that affect
wind-erodible fractions and surface crusting showed little variation among the studied soil
profiles. On the other hand, the NDVI and elevation heights determining VCF and SRF
respectively showed higher variation among the studied sites. Combining the five factors,
the ILSWE demonstrated very slight to moderate wind erosion severity. These values were
transformed to the corresponding WEPI which indicated very high to moderate quality.

4.6. Multivariate Analysis

CQI showed a significant negative correlation (p < 0.05) with the WEPI (Table 6).
This indicates that the slope aspect, the most critical climatic factor, exerts an important
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influence on soil erosion intensity. The VQI showed highly significant negative correla-
tions (p < 0.01) with MQI and WEPI, while the MQI showed a highly significant positive
correlation with the WEPI. These findings illustrate that intensive cultivation through
mechanized cultivation, proper use of fertilizers and pesticides and cultivation of improved
varieties enhanced the vegetation vigor on the one hand, while resulting in greater wind
erosion risks on the other hand. Results of the correlation analysis, in general, indicated
that the FA could be used efficiently for estimating weights of the parameters since they
showed correlations among themselves [20,23]. Results in Table 7 indicate that, for the
two components with eigenvalues > 1.0, the first component included WEPI with high
positive loadings and VQI with high negative loading, which emphasizes that areas of
more intensive cultivation showed higher susceptibility to wind erosion risks rather than
those of lower intensity; the second component was dominated by CQI with high posi-
tive loading and SQI with high negative loading, which indicates that poor quality soils
dominated areas of the north- and east-facing slope aspects. According to weight values
derived from the FA, the five indices could be arranged based on their relative impor-
tance as follows: MQI = WEPI > SQI = VQI > CQI. Weight values, in fact, refer to relative
contribution and degree of priority for each factor in proportion to those remaining for
decision-making [40].

4.7. Environmentally Sensitivity Areas to Desertification

Results in (Table 8) showed that the studied area was classified as critical-sensitive
to desertification (high-critical ESAs (C3) and medium-critical ESAs (C2)). Results of
the ESAI suggested by the MEDALUS model indicated also a critical-sensitive degree of
desertification. Although both models used similar input indices, the differences in weights
of indicators resulted in changes in the final output values.

4.8. Validation

The statistical analysis indicated no significant differences (p < 0.01) between the
proposed model and the ESAI. Furthermore, values of R2 and RMSE were 0.89 and 0.04,
respectively, which demonstrates a high correlation between the estimated values from
both models. This emphasizes that the performance of the proposed model was satisfactory
for quantifying ESAs to desertification in the studied area. However, the sensitivity analysis
(Figure 8) revealed that the outputs of the proposed model showed higher values for ALS
in the five indices rather than those obtained by the ESAI. This means that the proposed
model was more representative for the input parameters [35,36], indicating its preference
for tracking spatiotemporal changes in the desertification status of the studied area. This
shows that the proposed model has taken into account the relative influence (weight) of
each input parameter derived from a reliable and science-based estimation (FA) rather than
the equal weights as adopted in the MEDALUS approach. Using weights of the indices in
generating desertification maps could render the results closer to reality [40,41,48,49].

5. Conclusions

Quantifying locally dominant degradation-related processes as well as their repre-
sentation is essential for proper spatiotemporal monitoring of ESAs to desertification.
El-Farafra Oasis was dominated by five geomorphic units: rocky area, bare land, vege-
tation, sabkha and water bodies. Data was collected from remotely sensed images, field
observations, climate conditions and laboratory analysis covering the 987.77 km2 of the
study area. The data were analyzed in order to characterize five soil quality indices as
well as climate, vegetation, land management, and wind erosion. The geometric mean
algorithm of number (n) of scores (S) was used to calculated each soil quality index. They
were weighted using FA and the inverse distance weighted (IDW) interpolation technique
was used to generate SQI, CQI, VQI, MQI and WEPI thematic layers; then a GIS-based
spatial model was implemented to superimpose the five indicators on a single map using
the weighted sum model. The proposed model showed that the studied area was classified
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as critical-sensitive to desertification. The high-critical ESA is (C3) which occupied 59.25%
of the total area, while the medium-critical is (C2) with 37.85% of the total coverage. The
ESAI suggested by the MEDALUS methodology indicated that 18% of the total area was
classified as high-critical and 78% as medium-critical. The statistical analysis indicated no
significant differences (p < 0.01) between the proposed model and the ESAI with values of
R2 and RMSE of 0.89 and 0.04, respectively, which demonstrates a high correlation between
the estimated values from both models. However, the sensitivity analysis revealed that
the outputs of the proposed model showed higher values of ALS to the five indices rather
than those obtained by the ESAI. Using weights based on the FA technique resulted in a
better representation of the quality indices than the original MEDALUS methodology. The
developed model would be useful in precise monitoring of spatiotemporal changes in the
desertification status under inland desert oases conditions.
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